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Abstract We examined the variations of bacterial popu-

lations in treated drinking water prior to and after the final

chlorine disinfection step at two different surface water

treatment plants. For this purpose, the bacterial communi-

ties present in treated water were sampled after granular

activated carbon (GAC) filtration and chlorine disinfection

from two drinking water treatment plants supplying the city

of Paris (France). Samples were analyzed after genomic

DNA extraction, polymerase chain reaction (PCR) ampli-

fication, cloning, and sequencing of a number of 16S

ribosomal RNA (rRNA) genes. The 16S rDNA sequences

were clustered into operational taxonomic units (OTUs)

and the OTU abundance patterns were obtained for each

sample. The observed differences suggest that the chlorine

disinfection step markedly affects the bacterial community

structure and composition present in GAC water. Members

of the Alphaproteobacteria and Betaproteobacteria were

found to be predominant in the GAC water samples after

phylogenetic analyses of the OTUs. Following the chlorine

disinfection step, numerous changes were observed,

including decreased representation of Proteobacteria

phylotypes. Our results indicate that the use of molecular

methods to investigate changes in the abundance of certain

bacterial groups following chlorine-based disinfection will

aid in further understanding the bacterial ecology of

drinking water treatment plants (DWTPs), particularly the

disinfection step, as it constitutes the final barrier before

drinking water distribution to the consumer’s tap.
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Introduction

The introduction of water treatment for safe use was one of

the great achievements of the 20th century. The widespread

use of water filtration, followed by disinfection, led to a

drastic reduction of infectious disease outbreaks associated

with contaminated water [38]. Nonetheless, rapid industrial

development, intense agronomic practices, and human

demographic changes have resulted in augmented con-

tamination of natural water systems that has challenged the

performance of water treatment facilities.

Source water for drinking water production is provided

by natural lakes and rivers, manmade reservoirs, and

groundwater, depending upon the regionally available

freshwater resources. Modern drinking water treatment

plants (DWTPs) employ various procedures, including

coagulation, flocculation, filtration, and disinfection,

depending on source water quality [47]. Previous studies

have shown that bacterial diversity in drinking water can be

affected by differences in type of source water and treat-

ment processes used in DWTPs [11, 19, 41]. As surface

water quality can be affected by a variety of events, such as

stormwater runoff or pollution, the treatment processes

tailored for groundwater and surface water treatment plants

generally differ [22, 47].

In order to reduce organic compound contamination,

granular activated carbon (GAC) filtration is often the step

preceding the final disinfectant addition step in DWTPs.
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GAC filters, a porous media, can accumulate organic

nutrients that support bacterial growth and thus metabolism

of most remaining contaminants [7, 30, 41, 45]. Bacteria

isolated and cultivated from GAC filters have been iden-

tified as belonging to a variety of genera, including

potential human pathogens [7, 31, 41, 48].

To ensure the microbial quality of drinking water from

treatment plant to consumer tap, a final treatment step of

disinfection is performed on the GAC effluent water in

order to reduce the number of pathogens in the processed

water to an acceptable level and to limit microbial growth

in the drinking water distribution system (DWDS). In this

step, a disinfectant, commonly chlorine or chloramine, is

added and subsequently maintained at a minimal residual

concentration along the length of the DWDS. Disinfection

represents the final step before water entry into the DWDS

and thus plays an important role in determining the com-

position of the bacterial population of finished drinking

water [11, 34]. Even in the presence of an extremely potent

bactericidal agent such as chlorine, certain bacteria can

survive the disinfection procedure. For example, bacterial-

colonized GAC particles discharged into the process

effluent have been shown to increase resistance to disin-

fectants and thus lead to the release of bacteria, attached to

carbon fines, into the drinking water [8, 26, 29, 41].

Intrinsic resistance to disinfectants commonly used to treat

drinking water has also been demonstrated, using cultiva-

tion methods, for some members of the Mycobacterium and

Bacillus genera, as well as certain Gram-negative bacterial

species [14, 24, 33, 36].

After disinfection treatment, remaining bacteria released

into the DWDS may interact with microbial populations

present in the water distribution network and be involved in

biofilm growth, nitrification, microbial-mediated corrosion,

and pathogen persistence [5, 27]. As a consequence,

knowledge of the bacterial ecology in the DWTPs is of

prime concern for drinking water producers, since the

presence of certain bacteria can be a source of water

quality problems in the downstream DWDS. Moreover, the

appearance of ‘‘emerging pathogens’’ in drinking water has

arisen as a new challenge for water and public health

authorities. These ‘‘emerging pathogens’’ include species

of environmental bacteria that can survive within the

DWDS, and comprise a number of opportunistic patho-

gens, such as Legionella sp., Aeromonas sp., Mycobacte-

rium sp., and Pseudomonas aeruginosa, among others [42].

The use of cultivable microbial indicators is required by

regulation to assess the biological effectiveness of the

treatment processes and quality of finished drinking water.

Laboratory experiments, using plate count techniques, have

also been used to assess bacterial behavior to disinfectant

exposure [14, 24, 33]. Although these cultivation tech-

niques have proven their efficacy in the past, new microbial

risk-assessment methods are clearly needed [6, 17], as

bacterial culture methods are now known to significantly

underestimate the bacterial diversity in drinking water [42].

Molecular methods, based on the amplification and

sequencing of the small subunit 16S ribosomal RNA genes

(SSU 16S rDNA), have made it possible to study microbial

populations independently of cultivation [2]. The use of

such 16S rDNA-based approaches conducted on fully

functioning surface water DWTPs can provide valuable

information on bacterial population changes prior to and

after chlorination; for example, a recent 16S rDNA analysis

within a groundwater-based DWTP revealed that members

of the class Betaproteobacteria considerably decreased

following the chlorine disinfection treatment [23].

The aim of this study was to assess the bacterial groups

present in water after GAC filtration and following chlo-

rination in two DWTPs that use similar treatment processes

on different surface water sources (the Marne and Seine

rivers) to supply drinking water for the city of Paris,

France. For each sample, genomic DNA was extracted and

the 16S rRNA genes amplified, followed by DNA

sequencing of 439 cloned amplification products. Phylo-

genetic analyses were performed on the 16S rDNA

sequences retrieved from the samples, and taxonomic

profiles were obtained for each community. Using this

approach, we identified numerous changes in bacterial

diversity, including at the levels of both taxa richness and

evenness, which occurred after the final disinfection step.

Materials and methods

Water sampling of the two surface water treatment

plants

The two DWTPs, located near the towns of Ivry-sur-Seine

and Joinville-le-Pont, treat surface water retrieved from the

Seine and Marne rivers, respectively, based on biological

slow sand filtration [35]. Surface water is first subjected to

preozonation, and then filtered through Biolite after the

injection of ferric chloride and polyelectrolyte, resulting in

contact coagulation. Water is successively filtered through

rapid sand filters and biological slow sand filters. After

ozonation, followed by GAC filtration, a final disinfection

step to produce finished drinking water is carried out by the

addition of sodium hypochlorite (free residual chlorine:

[0.5 mg/l after 30 min contact time) and followed by the

addition of phosphoric acid to inhibit lead pipe corrosion in

the DWDS (residual concentration: [1 mg/l).

Granular activated carbon filtered water and finished

drinking water from each DWTP were sampled on June 30

and July 1, 2008 from the Joinville-le-Pont and Ivry-sur-

Seine sites, respectively, and processed as previously
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described [35]. Briefly, water was collected using sterile 1-l

bottles containing 20 mg sodium thiosulfate to inactivate

residual chlorine and ozone. Samples were transported on

ice and processed within 4 h after collection. Microor-

ganisms were harvested by filtering 12 l water through a

0.2-lm-pore-size nylon filter (47 mm diameter, Millipore,

Molsheim, France) and the filters were stored at -70�C

until use.

Nucleic acids extraction and purification

Nucleic acids were extracted from the frozen filters as

previously described [35]. As nucleic acids extracted from

the GAC samples were found to contain significant

amounts of RNA, known to cause problems in PCR reac-

tions [44], the extracted nucleic acids from all samples

were treated with 50 U RNase I (Fermentas, Saint-Remy-

lès-Chevreuse, France) for 10 min at 37�C. The nucleic

acids were then purified by chloroform/isoamyl alcohol

extraction, precipitated with ethanol, and resuspended in

0.19 TE buffer, as previously described [35]. The purified

nucleic acids were visualized by electrophoresis through a

0.8% agarose gel in TAE buffer (20 mM Tris–acetate pH

8, 5 mM Na-EDTA) and stored at -20�C until use.

Small subunit rRNA gene library construction

The 16S rDNA sequences were amplified from DNA

samples using the primers 517F (50-GCCAGCAGC

CGCGGTAA-30) and 1407R (50-GACGGGCGGTGTGT

RC-30) [50]. The PCR reactions (five per sample, to avoid

single-tube amplification bias) were carried out in 50 ll

total final reaction volumes using 10 ng DNA template,

0.25 lM phosphorylated primers (Sigma–Aldrich, Lyon,

France), 0.2 mM dNTP mix (Fermentas, Saint Remy Les

Chevreuses, France), 19 Phusion HF buffer (Ozyme,

Saint-Quentin-en-Yvelines, France) with 1.5 mM MgCl2
and 0.5 U Phusion DNA polymerase (Ozyme, Saint-

Quentin-en-Yvelines, France). The conditions of amplifi-

cation were: 2 min at 98�C followed by 25 cycles for 20 s

at 98�C, 30 s at 54�C, 20 s at 72�C, and a final elongation

step for 5 min at 72�C. The amplified fragments were

purified using the Nucleospin Extract II kit (Macherey–

Nagel, Hoerdt, France) after electrophoresis through a

0.8% agarose gel in TAE buffer. Then, the purified DNA

fragments were cloned into the pSmartLCKan vector

(Lucigen, Middleton, USA) as recommended by the man-

ufacturer. Plasmids containing 16S rDNA-sized inserts

were isolated using the Nucleospin Multi-96 Plus Plasmid

kit (Macherey–Nagel, Hoerdt, France) and sequenced by

Cogenics-GENOME Express (Grenoble, France) using

vector primers.

16S rDNA sequence and phylogenetic analyses

After sequencing of selected cloned inserts, chimeric 16S

rDNA sequences were removed after examination using the

Bellerophon [18] and Pintail [3] programs. The remaining

sequences retrieved from all samples were aligned using

the NAST program [10], manually refined with Bioedit

version 7.0.0 [16], and then a corrected distance matrix

(F84 model) was generated using the DNADIST ver-

sion 3.5c program from the PHYLIP package [13] imple-

mented in Bioedit. The generated distance matrix was used

as an input file for DOTUR version 1.3 [37]. The DOTUR

program was used to group sequences into defined single

operational taxonomic units (OTUs) using a C97%

sequence similarity threshold [40], and to calculate total

OTU richness (Chao1 estimates). Representatives of each

OTU were selected and subjected to a phylogenetic anal-

ysis. In total, 168 16S rDNA sequences were used as a

BLAST query [1] against 16S rDNA sequences present in

the GenBank and Ribosomal Database Project II databases

[4, 9]. The closest matching sequences were retrieved from

the databases and aligned with the cloned sequences using

NAST, and then manually refined with Bioedit. The

bootstrapped (100 replicates) phylogenetic trees were

generated with MEGA version 4 [43] using the neighbor-

joining and maximum-likelihood methods. The 16S rDNA

sequences determined in this study have been deposited

in the GenBank database under accession numbers

GQ452964 to GQ453402.

Results

OTU abundance patterns

Water samples were collected from the GAC filter effluent

and after the final chlorine disinfection step of the treat-

ment process from the two DWTPs. The bacteriological

and chemical analyses of the water sources (Seine or

Marne rivers) used by the DWTPs, and the GAC effluents

plus finished drinking water samples, are presented in

Table 1. Although the samples collected at the two water

sources did not display major differences, the results did

reveal higher total coliforms and Escherichia coli numbers

in the Seine river and higher levels of NH4 in the Marne

river (Table 1).

A 16S rDNA library was generated for each sample and

439 total sequences were analyzed after removal of chi-

meric sequences. The 16S rDNA libraries were designated

I-GAC and I-DW, for the Ivry-sur-Seine GAC and finished

drinking water samples, respectively, and J-GAC and

J-DW, corresponding to the Joinville-le-Pont GAC and

finished drinking water samples, respectively. In order to
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measure the potential bacterial richness and abundance

within each sampled library, the 16S rDNA sequences with

C97% sequence similarity were clustered into operational

taxonomic units (OTUs) and the OTU abundance pattern

was determined by ranking and plotting the relative

abundance data for each sample (Fig. 1). The results yiel-

ded 28, 33, 73, and 55 distinct OTUs in the J-DW, I-DW,

J-GAC, and I-GAC samples, respectively. The finished

drinking water samples were found to contain several

abundant (each accounting for C10% of the population)

OTUs representing 22%, 18.9%, and 12.1% of the total 16S

rDNA sequences in the J-DW sample and 23.8%, 13.3%,

and 12.4% of the total 16S rDNA sequences in the I-DW

sample (Fig. 1). In contrast, less than 10% of the total

sequences could be classed as ‘‘abundant OTUs’’ in the

GAC effluent samples, suggesting a more uniform popu-

lation structure. In support of this, we found that the fre-

quency of single-represented sequenced clones accounted

for 10.6% and 16.2% of the 16S rDNA sequences in the

J-DW and I-DW samples, respectively, versus 53.9% and

79.5% of the 16S rDNA sequences in the I-GAC and

J-GAC samples, respectively (Fig. 1). Moreover, species

diversity based on Chao1 estimates indicate a total OTU

richness projected to be 43 (J-DW) and 62 (I-DW) for the

finished drinking water samples, and 238 (J-GAC) and 125

(I-GAC) total OTUs in the GAC effluent samples.

Phylogenetic analyses

Representatives of each OTU were subjected to a phylo-

genetic analyses (Figs. 2, 3, 4). In the GAC samples, a

variety of the OTUs were found to belong to the Proteo-

bacteria phylum (Figs. 2, 3). The Alphaproteobacteria-

affiliated OTUs were found to be clustered into 21 and 29

OTUs in the I-GAC and J-GAC samples, respectively,

whereas only 2 (J-DW) and 5 (I-DW) Alphaproteobacteria-

affiliated OTUs were discerned in the finished drinking

water samples (Fig. 2). The assigned Alphaproteobacteria

sequences were found to be affiliated to a variety of taxa,

including members of the Sphingopyxis, Brevundimonas,

Hyphomicrobium, Methylocystis, Bradyrhizobium, Rickett-

sia, and Acidisphaera genera. Within the class Betaprote-

obacteria, 17 distinct OTUs were identified in the GAC

samples. Among these were members belonging to the

Methylibium, Polaromonas, Comamonas, Herminiimonas,

Polynucleobacter, and Methylophilus genera (Fig. 3a), and

including the J-GAC-19 and J-GAC-17 OTUs found to be

closely related to 16S rDNA sequences (sequences with a

BAC prefix in Fig. 3a) retrieved from cultivated bacteria

previously isolated from GAC filters [31]. OTUs affiliated

to the Gammaproteobacteria were represented only by

members belonging to the genus Legionella and were only

observed in the GAC samples (Fig. 3b). The phylogenetic

analyses also revealed the presence of OTUs belonging to

the class Deltaproteobacteria, some of which were found to

be related to members of the genus Bdellovibrio (Fig. 3c).

Phylogenetic analyses of the OTUs retrieved from the

chlorinated finished drinking water samples showed that

members belonging to nonproteobacterial groups were

numerous in both finished drinking water samples (Fig. 4).

The most frequently observed OTUs in the I-DW and J-

DW samples were found to be closely related to those

(sequences with an HOCl or Ivry prefix in Fig. 4) previ-

ously observed in other drinking water samples [35, 49].

More precisely, the J-DW-87 (representing 25 clones in the

J-DW and I-DW samples) and J-DW-46 (representing 29

and 6 clones in the J-DW and I-DW samples, respectively)

OTUs were affiliated to currently unclassified bacteria

(Fig. 4). Within the Bacteroidetes, all OTUs were capable

of being placed into the orders Sphingobacteriales and

Table 1 Summary of water quality at the time of sampling

Parameter measured Site

Ivry-sur-Seine Joinville-le-Pont

Seine river GAC DW Marne river GAC DW

Temperature (�C) 24.0 26.9 23.3 27.4 24.9 24.8

pH 8.15 7.70 7.47 8.20 7.95 7.90

Turbidity (NFU)a 7.69 0.042 0.046 8.30 0.035 0.028

TOC (mg/l)b 2.52 1.46 1.57 1.96 1.19 1.39

Free chlorine (mg/l) – – 0.54 – – 0.72

Total chlorine (mg/l) – – 0.62 – – 0.79

NH4 (mg/l) 0.03 \0.01 \0.01 0.09 \0.01 \0.01

NO2 (mg/l) 0.070 \0.005 \0.005 0.060 \0.005 \0.005

E. coli (/100 ml)c 3,000 0 0 1,180 0 0

Total coliforms (/100 ml)c 8,000 0 0 2,334 0 0
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Flavobacteria and some of these were found to be closely

related to 16S rDNA sequences affiliated to the genera

Terrimonas and Chryseobacterium (Fig. 4). The I-DW-24

and I-DW-11 OTUs, represented by 14 and 13 clones,

respectively, were found to be highly related to Myco-

bacterium salmoniphylum (99.8% sequence similarity) and

Mycobacterium llatzerense (100% sequence similarity)

(Fig. 4). Eight OTUs retrieved from the finished drinking

water sample from the Joinville-le-Pont DWTP were

identified as belonging to the Planctomycetes phylum

(Fig. 4). The remaining sequences from the samples were

scattered over a wide taxonomic distribution, including

members belonging to the phyla, Acidobacteria, Chlamy-

diae, Verrucomicrobia, Nitrospira, Firmicutes, and

Cyanobacteria.

Taxonomic composition

The percentage of 16S rDNA sequences affiliated to the

major bacterial taxonomic groups present in each sample is

shown in Fig. 5. The results revealed that the total

sequenced clones affiliated to the Proteobacteria phylum

accounted for 15.5% and 18.4% of the 16S rDNA

sequences in the J-DW and I-DW samples, respectively,

with a significantly higher proportion (81.5% for J-GAC

and 71.1% for I-GAC) observed in the GAC samples

(Fig. 5). At least 50% of the clones retrieved from the

I-GAC and J-GAC samples were assigned to the classes

Betaproteobacteria and Alphaproteobacteria, whereas in

the finished drinking water samples, only 16.9% (I-DW)

and 2.2% (J-DW) of the clones were affiliated to these

proteobacterial classes (Fig. 5).

Among the other Eubacterium phyla, both the J-DW and

I-DW samples contained a large proportion (51.5% and

35.9%, respectively) of 16S rDNA clones belonging to a

bacterial group composed of currently unclassified mem-

bers. Sequences affiliated to the phylum Bacteroidetes

were observed at higher frequencies in the finished drink-

ing water samples than in the GAC water samples from

both sampled sites (Fig. 5). We observed an increased

abundance of sequences affiliated to the phylum Actino-

bacteria between the I-GAC (1.3%) and I-DW (23.7%)

samples, yet no member of this phylum was observed in the

Joinville-le-Pont samples. In the J-DW sample, members of

the Planctomycetes were found to account for 21.3% of the

observed bacterial population (Fig. 5).

Discussion

The aim of the present study was to investigate bacterial

community changes in processed water after the disinfec-

tion step in two surface water treatment plants using a 16S

rDNA-based approach to overcome cultivation-based lim-

itations. We examined the bacterial community composi-

tion of treated water samples taken at the end of the GAC

filtration step and after chlorine-based disinfection from the

Ivry-sur-Seine and Joinville-le-Pont DWTPs that use sim-

ilar treatment processes but different raw water sources

(Marne and Seine rivers).

Microbial cells were collected from water samples by

filtration, DNA was extracted, and the 16S rRNA genes

amplified by PCR. After clone library construction,

sequenced 16S rRNA genes were grouped into OTUs using

Fig. 1 Rank abundance plots of OTUs from each sampled library: a GAC and b finished drinking samples from Ivry-sur-Seine; c GAC and

d finished drinking water samples from Joinville-le-Pont
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Fig. 2 Phylogenetic tree of the OTUs belonging to the class

Alphaproteobacteria. Bootstrap values greater than or equal to 50%

are indicated at the nodes. The scale bar represents the number of

substitutions per unit branch length. The numbers in parentheses

indicate the occurrence of a specific OTU in the different 16S rDNA

sampled libraries as follows: green, I-GAC sample; blue, I-DW

sample; brown, J-GAC sample; and red, J-DW sample. The tree was

rooted using Microcystis aeruginosa as an outgroup
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Fig. 3 Phylogenetic trees of the OTUs belonging to the classes a
Betaproteobacteria, b Gammaproteobacteria, and c Deltaproteobac-
teria. Bootstrap values greater than or equal to 50% are indicated at

the nodes. The scale bar represents the number of substitutions per

unit branch length. The numbers in parentheses indicate the

occurrence of a specific OTU in the different 16S rDNA sampled

libraries as indicated in the legend to Fig. 3. The trees were rooted

using Microcystis aeruginosa as an outgroup
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Fig. 4 Phylogenetic analysis of the OTUs belonging to the domain

Eubacteria. Bootstrap values greater than or equal to 50% are

indicated at the nodes. The scale bar represents the number of

substitutions per unit branch length. The numbers in parentheses

indicate the occurrence of a specific OTU in the different 16S rDNA

sampled libraries as indicated in the legend to Fig. 3. Arrows indicate

the most abundant OTUs present in the I-DW and J-DW samples. The

tree was rooted using Sulfolobus metallicus as an outgroup
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a C97% sequence similarity threshold. The OTU richness

identified in the finished drinking water libraries [28 (J-

DW) and 33 (I-DW) OTUs] was found to be less than that

observed in the GAC water samples [55 (I-GAC) and 73 (J-

GAC) OTUs]. The Chao1 calculations indicate an overall

estimated total OTU richness of 43 (J-DW) and 62 (I-DW)

OTUs in the finished drinking water samples, whereas 125

(I-GAC) and 238 (J-GAC) OTUs were estimated to be

present in GAC water samples. These results, not surpris-

ingly, show a decrease in bacterial richness present in the

treated water following the disinfection step, a result con-

sistent with previous studies [23, 34] and in accordance

with the known biocide effects of adding uncombined

chlorine in the form of hypochlorous acid (HOCl). Our

results also show the presence of several dominant OTUs

in the finished drinking water samples from both the Ivry-

sur-Seine and Joinville-le-Pont samples, whereas this

dominance was not observed in the corresponding GAC

effluent samples. An explanation for these bacterial even-

ness changes following the disinfection treatment is likely

attributable to a differential level of sensitivity of bacterial

taxa present in the GAC water to the chlorine disinfectant

[24, 32].

At the end of GAC filtration, the bacterial population

was found to be dominated by a variety of low abundance

OTUs, mainly affiliated to the Alphaproteobacteria and

Betaproteobacteria classes in both the I-GAC (71.1%) and

J-GAC (81.5%) samples (Figs. 2, 3a). These results are

consistent with those obtained using cultivation methods

on GAC effluent samples, as the colonies identified as

belonging to the genus Pseudomonas are presently classi-

fied within the Proteobacteria phylum, and mainly affili-

ated to the Alphaproteobacteria and Betaproteobacteria

classes [21, 34, 41]. By identifying the predominant cul-

tivable bacteria within GAC filters from different full-scale

DWTPs, Magic-Knezev et al. (2009) also found that most

bacteria belonged to the Alphaproteobacteria and Beta-

proteobacteria classes, suggesting that these types of bac-

teria, or their nucleic acids, may persist up until this step in

the DWTPs.

Following the chlorine disinfection step, reduced num-

bers of Proteobacteria-affiliated clones, particularly

marked for the Alphaproteobacteria and Betaproteobacte-

ria classes, were encountered in both the J-DW (15.5%)

and I-DW (18.4%) samples (Fig. 5). It has been previously

noted that members of the Betaproteobacteria can be

particularly sensitive to chlorine disinfection [23, 49].

Members of the Proteobacteria have, in contrast, been

previously observed to be abundant in some samples of

finished drinking water [35] or in planktonic bacterial

Fig. 5 Taxonomic abundance of 16S rDNA sequences from each sampled library: a GAC and b finished drinking water samples from Ivry-sur-

Seine; c GAC and d finished drinking water samples from Joinville-le-Pont
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populations of downstream chlorinated drinking water

within an urban DWDS [49]. These differences can be

accounted for by differences in the location of different

drinking water networks, source water quality [11] or by

physicochemical effects, such as water temperature, on the

efficiency of chlorine treatment [20, 24]. In addition, the

presence of microbial biofilms, including members of the

genus Sphingomonas [39], on the pipe surfaces within a

DWDS, and subsequent release of biofilm-attached bacte-

ria into the bulk water phase, may also affect the planktonic

bacterial diversity observed in drinking water [28].

The 16S rDNA sequences affiliated to an unclassified

bacterial group, as well as members of the Bacteroidetes,

Planctomycetes, and Actinobacteria phyla, constitute the

most abundant bacterial lineages observed in the finished

drinking water samples (Fig. 5). Phylogenetic analyses of

clones examined in the I-DW and J-DW samples revealed

that the highest abundance OTUs, affiliated to the unclas-

sified bacteria observed in the I-DW and J-DW samples,

were identical (Fig. 4) and closely related to those

observed in previous studies [35, 49], suggesting that these

bacteria may form part of the microbiota present in chlo-

rinated drinking water. The Bacteroidetes, identified in

higher abundance after the disinfection step in both the I-

DW and J-DW samples, were found to be represented by

members of the Sphingobacteriales and Flavobacteria

orders (Fig. 4). Members of the Bacteroidetes (previously

known as Cytophaga–Flavobacterium–Bacteroides) are

frequently isolated in aquatic environments [52]. Flavo-

bacterium species have been reported to display a high

degree of resistance to chlorine treatment and be readily

isolated from disinfected drinking water [41, 51]. Members

belonging to the Planctomycetes phylum were found to

represent 21.3% of the total 16S rDNA sequences retrieved

in the J-DW sample (Fig. 5), a result in accordance with

previous studies, as members of the phylum Planctomy-

cetes have been consistently identified in chlorinated

drinking water [11, 23, 35]. Members of the Actinobacteria

were found in the I-GAC (1.3%) and I-DW (23.7%) sam-

ples (Fig. 5). The phylogenetic analyses indicate that the

OTUs affiliated to the genus Mycobacterium within the

Actinobacteria in the Ivry-sur-Seine finished water sample

were highly related ([99%) to Mycobacterium salmoni-

phylum and Mycobacterium llatzerense (Fig. 4). Whereas

Mycobacterium salmoniphylum has been considered as a

Mycobacterium chelonae-like organism isolated from sal-

monid fishes, Mycobacterium llatzerense was isolated from

hemodialysis water [15, 46]. The significance of their

presence is not currently discernible. The presence of

Mycobacteria in drinking water, and specifically in the

DWTP of Ivry-sur-Seine, has previously been reported [12,

25]. Moreover, members of the genus Mycobacterium have

been found to be resistant to chlorine treatment, and some

species (e.g., Mycobacterium tuberculosis) are known to be

pathogenic for humans [24, 25]. No 16S rDNA sequences

capable of being affiliated to the genus Mycobacterium

were identified in the Joinville-le-Pont DWTP samples, a

result possibly due to quantitative differences in their

presence in the two source waters used and/or slight

functional differences between the two DWTPs [12]. It

should be noted here that it is not possible to determine if

the bacteria that we identified represent dead or live cells.

Although a 16S rDNA-based analysis allows bacterial

identification in the absence of cultivation-based bias, the

significance of the bacterial groups detected in this study

clearly requires much further research.

The results reported here support the notion that chlo-

rination plays an important role in the bacterial populations

of finished drinking water released into the DWDS [11,

34]. The data presented in this study show that the disin-

fection step, carried out by chlorine addition in the

DWTPs, can markedly affect the bacterial diversity in

finished drinking water. Our results also indicate that cer-

tain bacterial groups are particularly affected by the chlo-

rine-based disinfection treatment performed in the two

DWTPs, suggesting a differential level of sensitivity to the

disinfection treatment. Further research is clearly needed to

fully elucidate the bacterial ecology of DWTPs, particu-

larly the disinfection step, as it constitutes the final barrier

before drinking water distribution to the consumer’s tap.
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